

Газпромнефть Теплоноситель 65

Концентрированный низкозамерзающий теплоноситель на основе карбоновых кислот (ОАТ-технология), предназначен для использования в системах отопления, тепловых насосах и других теплообменных аппаратах и системах, а также в качестве хладоносителя в промышленных системах кондиционирования воздуха и в холодильных установках. Обеспечивает надежную и долговременную защиту от коррозии все металлы систем теплообмена. Совместим с оборудованием Buderus, Viessmann, Vaillant, Ferolli, York, Train, Carrier, Daikin. Температура защиты от замерзания: -65 °C. Температура кипения +106 °C при атмосферном давлении. Для сохранения уникальных свойств теплоносителя заливать в чистую систему, предварительно промыв ее. Для получения теплоносителей с различными температурами замерзания Газпромнефть Теплоноситель 65 следует развести водой в пропорциях (см. табл.).

Применение

- В автономных системах отопления с любыми типами котлов, за исключением электродных
- В системах кондиционирования воздуха административных и жилых зданий, социальных объектов
- Во вторичных контурах холодильных установок, включая холодильные системы ледовых стадионов
- В системах рекуперации тепла, тепловых насосах и в других теплообменных аппаратах и системах
- Срок эксплуатации теплоносителя определяется в соответствии с рекомендациями изготовителя оборудования. При соблюдении условий эксплуатации и наличии контроля над характеристиками теплоносителя срок эксплуатации может составлять до 10 лет и более

При эксплуатации Газпромнефть Теплоноситель 65 следует соблюдать следующие рекомендации

- В системах с нагревательными котлами должна быть обеспечена надлежащая циркуляция теплоносителя, нагревательные элементы в процессе работы должны быть полностью погружены в теплоноситель, чтобы не допускать их перегрева и термического разложения («пригорания») этиленгликоля.
- Необходимо, по возможности, исключить контакт Газпромнефть Теплоноситель 65 с атмосферным воздухом, применять герметичные расширительные емкости. Контакт с воздухом и высокие температуры приводят к окислению этиленгликоля и уменьшению ресурса эксплуатации теплоносителя.
- В первые дни после заливки Газпромнефть Теплоноситель 65 следует следить за состоянием соединительных узлов системы и при необходимости подтягивать их или менять уплотнения. Это особенно важно при замене в системе воды на антифриз, имеющий повышенную способность к просачиванию в неплотных соединениях из-за пониженного поверхностного натяжения. Лучшей защитой от протечек являются хорошие прокладки и качественная сборка системы.
- В теплообменных системах не рекомендуется использовать элементы, содержащие цинк, в частности, оцинкованные трубы. При контакте с теплоносителем цинковое покрытие будет отслаиваться и засорять теплообменники, а антикоррозионные свойства теплоносителя значительно ослабятся.
- Теплоноситель может эксплуатироваться при температурах выше точки кипения при соответствующем повышенном давлении в системе. Для температур выше 110 °C обязательно наличие азотной подушки.

Преимущества

- Улучшенная теплопередача оптимальный температурный режим работы системы
- Увеличенный срок службы ОАТ-технология, медленный расход присадок
- Отсутствие эффекта разрыва при замерзании теплоносителя в нештатных ситуациях
- Надежность высокотемпературная стабильность пакета присадок
- Устойчивость в жесткой воде отсутствие силикатов и фосфатов в составе теплоносителя
- Экологическая привлекательность соли карбоновых кислот в пакете присадок не оказывают влияния на экологию при утилизации

Одобрения

Clivet; DAB Pumps; Grundfos; KSB; Lavoro; WILO; Wirbel; КОНОРД

Типичные физико-химические характеристики

Типовые показатели	Метод	Газпромнефть Теплоноситель 65		
Внешний вид	Визуально	Однородная прозрачная жидкость красного цвета		
Плотность при 20 °C, г/см³	ASTM D1122	1,081-1,085		
рН	ASTM D1287	7,7-8,5		
Резерв щелочности	ASTM D1121	2,5-4,0		
Температура кристаллизации, °С	ASTM D1177	-65		
Температура кипения (1 атм), °С	ASTM D1120	116		
Показатель преломления при 20°C	ASTM D1218	1,4005		
Теплоемкость при 20 °C, кДж/кг°C	ASTM E1269	3,5		
Коэффициент расширения, %/°С: при 20 °С при 80 °С	ASTM D864	0,05 0,07		
Теплопроводность при 20°C, Вт/м°С	ASTM C177	0,38		
Вязкость кинематическая при 20°C, мм²/с	DIN 51562	7,2		
Поверхностное натяжение, мН/м	DIN EN 14370	56		

ASTM D1384. Коррозионное воздействие на металлы (коррозия в стекле), 336 час., 88°C.

	Латунь	Медь	Припой	Сталь	Чугун	Алюминий
	Среднее изменение веса пластины, мг ¹					
Норма по ASTM D3306 (макс.)	10	10	30	10	10	30
Газпромнефть Теплоноситель (типичные значения)	-1,8*	-1,7*	3,2	-1,1*	-1,2*	2,0

^{*}Отрицательные значения означают увеличение веса пластины

ASTM D4340. Коррозия на горячей поверхности, 25% об, 168 час, 135°C.

	Потеря веса, мг/см/неделя
Норма по ASTM D3306 (макс.)	1,0
Газпромнефть Теплоноситель (типичное значение)	0,25

Газпромнефть Теплоноситель 65 – концентрированный теплоноситель, применяемый для получения рабочих растворов с необходимой температурой защиты от замерзания. Газпромнефть Теплоноситель 65 следует разводить водой в концентрациях, приведенных в таблице:

Газпромнефть Теплоноситель 65, % об.	Вода, % об.	Температура защиты от замерзания, °С
50	50	-22
60	40	-29
70	30	-37
80	20	-46
90	10	-55
100	0	-65

Система менеджмента компании сертифицирована в соответствии

SO 9001 ISO 14001 ISO 45001

